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The numerical method proposed earlier in [l] is developed to solve problems of the impact and penetration of rigid and deformable 
bodies of revolution into soft soil, which are described by Grigoryan’s model [2]. The effect of the surface Coulomb friction, the 
bulk compressibility and the shear strength of soft soil on the forces of resistance and contact pressures in the contact zone is 
analysed. The results of numerical solutions of problems in a coherent formulation are compared with analytical relations and 
experimental data on the determination of the forces and coefficients of resistance to the penetration of impactors of different 
shapes into soft soil. 0 2003 Elsevier Ltd. All rights reserved. 

An approximate solution of problems of the penetration of blunt bodies into soils is well known [3]. 
The results are based on known representations of the different forms of penetration under supersonic 
and subsonic conditions and have been confirmed by experimental data. Some experimental data on 
the magnitude of the forces of resistance to penetration have been presented in [4-S]. A significant 
number of experimental papers are concerned with analysing the dynamic properties of sandy soil 
[9, lo], and the equations of state of this soil and other soft soils have been presented in [2, 111. The 
difficulties encountered in a theoretical determination of the mechanisms of penetration are primarily 
due to their unsteady nature, the diversity and inhomogeneity of the properties of natural soils and the 
fact that the equations of state which reliably describe these properties have not been sufficiently worked 
out. Analytical methods of solving problems of the penetration of bodies of revolution into soils using 
simplified representations of the dynamic behaviour of soil have been proposed in [3, 121. 

In recent years, numerical methods for investigating the impact and penetration of deformable bodies 
into soil have been developed using well-known models. The problem of determining the resistance to 
penetration of a rigid cone in soil without taking account of the shear properties of the soil has been 
solved [ 141 using a Godunov numerical scheme [ 131, and a technique for calculating the interaction of 
structural elements with soil media within the framework of a model of a plastic gas has been proposed 
in [15, 161. This technique has been used for the numerical investigation of the penetration of an 
undeformable impactor into an argillaceous medium and snow [7] and the use of a scheme of the first 
order of accuracy for the numerical modelling of the behaviour of elastoplastic media (soils which are 
described by Grigoryan’s model [2]) has been considered in [l, 17, 181. 

An experimental-theoretical investigation of the processes when impactors with plane, hemispherical 
and conical caps interact with sandy soil over a range of variation of the impact velocities from 100 m/s 
up to 500 m/s is presented below. It is established that the choice of the diagram for the bulk 
compressibility of soft soil mainly affects the maximum value of the resistance to the penetration of 
the impactor with a plane end. It is essential to take account of the shear strength of the soil when 
modelling the penetration of impactors with hemispherical and conical caps and, also, at the stage of 
developed penetration. The effect of sliding friction on the resistance when conical impactors penetrate 
into soil is determined by the semi-angle of the cone. The values of the resistance forces at the transient 
stage and at the stage of developed penetration, obtained using well-known analytical relations, are in 
satisfactory agreement with the numerical and experimental data in the range of velocities above 300 
m/s. The proposed modification of the analytical method, which involves the use of the solution of a 
problem of the decay of a discontinuity in order to find the density in the shock wave, enables satisfactory 
agreement to be obtained between the analytical solution and the numerical and experimental results 
over a wider range of impact velocities. 
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1. MATHEMATICAL FORMULATION OF THE PROBLEM 

The axisymmetric problem of the impact and penetration of a body of revolution into soil is formulated 
in a cylindrical system of coordinatesxye, wherex is the axis of revolution andy > 0. We will represent 
the system of equations [2], which describes the dynamics of the soil, on eliminating the dependence 
of the unknown quantities on 8, in the form 

(I-J),, + (PU),, + me,, = -(PWY 

(pu),, + (pu” + P-S,),, + (PUU- Qy = -(PUU- Q/Y 

(pu),,+(puu-s,),l+(Pv2+P-~,),, = -(P~2-2s,,-QY 

DJs,, + hs,, = 2G( 25 - yy - vly)I3 

DJS,y + hy = W,, + v,,) 

DJs,, + hSyy = 2G(2v,, - u,, - v/y)/3 

(1.1) 

The notation adopted is as follows: t is the time, p is the density, sii are the components of the stress 
deviator tensor, (i,j = x, y), DJ is the Jaumann derivative with respect to time and G is the shear modulus. 
A subscript after a comma denotes differentiation with respect to the corresponding variable. The 
parameter 3L can take the values h = 0 in the case of elastic deformation and h > 0 if a condition of 
plasticity occurs. In this technique, a procedure for normalizing the components of the deviator tensor 
to the quantity l/d is used, which is equivalent to the complete relations in the theory of plastic flow. 

The criterion of shear plasticity in the case of a soil medium in defined in the form of a function of 
the second invariant of the stress tensor of the pressurep 

1 yijs’J = F(P) (14 

(summation is carried out over repeated subscripts). 
The relations between the pressure and the density are taken in the form 

f,(p), Wit>0 
P= f&x p*). dpfdtIO (1.3) 

The first of these equations is the shock adiabatic curve and the second gives the curve for the stress 
relief against the maximum density p* which is attained during active loading of the soil. In the case 
of active loading, it is assumed that p* = p and that the stress relief and secondary additional loading 
are described by the equation dp*/dt = 0, where dldt is the total time derivative. It is more convenient 
to write this equation in Euler variables and in a divergent form by transforming it using the law of 
conservation of mass to the form of a law of conservation for pp*, as has been done previously in [14], 

(PP*),, + (PP*q, + (PP*q, = -(Pp*WY 

An explicit difference scheme [l, 191 of the first order accuracy was used to solve the problems. This 
scheme combines the Lagrange and Euler approaches to the description of the motion of a compressible 
medium. The following boundary conditions are employed: “free surface” cs = 0, z = 0, where o and r 
are the normal and tangential components of the stresses in the free boundary, “irnpemeabirity along 
the normal”: II,,~ = v,,~ and “slippage with Coulomb fiction”: z = ko,, in the tangential direction. Here, 
u, is the velocity component along the normal to the surface of contact and k is the coefficient of 
Coulomb friction. The conditions on the surfaces of contact of the bodies and the media with different 
physical and mechanical properties also take account of the phenomenon of detachment, the formation 
of free surfaces (cavitational hollows) and their possible subsequent collapse. They are formulated as 
a combination of the impermeability conditions on those segments of the surfaces which find themselves 
in contact at a given instant of time and the conditions on the free boundaries in the remaining segments. 
The inequality 4 < qk, where q is the contact pressure and qk is a certain constant which characterizes 
the resistance to detachment, serves as the criterion of the transition from conditions of impermeability 
to the condition in the free surface (detachment). The geometrical intersection of the free surfaces of 
the bodies is the criterion of coming into contact. 
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The numerical implementation of the contact conditions is based on the separation and tracking during 
calculations of the contacting and free surfaces. The contact forces are determined by the simultaneous 
solution of the difference equations for the motion of the structural elements and the dynamic 
compatibility relations for the waves in the contacting media. Effective algorithms have been developed 
[19] which implement the contact conditions (including when the contacting surfaces are approximated 
by the meshes with non-coincident mesh points) for problems of the collision and penetration of 
deformable and rigid bodies into compressible media. 

2. THE EQUATION OF STATE OF SOIL 

The technique which has been developed enables us to describe the interaction of rigid and deformable 
bodies and structural elements with different soft soils if the functions (1.2) and (1.3) are known. In 
this paper, the experimentally obtained values of the constants and auxiliary relations are presented 
for sand with natural moisture content. The decisive relations (1.3) between the bulk deformation 
E = 1 - pu/p and the pressurep in sandy soil when the pressure changes up to 10 MPa are based on the 
experimental results in [9] on explosions of spherical charges in sandy soil and are taken in the form 
of the relation 

P = ME' (2-l) 
The shock adiabatic curve, obtained using the results of the plane wave shock experiments described 
in [lo], is used at pressures greater than 250 MPa. The linear relation D = A + BU between the shock 
wave velocity and D the mass velocity behind the wave from U is transformed, using the Hugoniot 
conditions, to the form 

p = paA%(l -BE)-2 
(2.2) 

where p. is the initial density of the soil andA and B are constants. Within the range from 10-250 MPa, 
an interpolating, parametric, cubic Bezier polynomial [18] is used which ensures the continuity of the 
speeds of sound (of the derivative dpldp) at the junction points. 

r(w) = {p(w), p(w)) = (1 - w)3r1 + 3w( 1 - w)*r2 + 3w2( 1 - w)r, + w3rq (2.3) 

The polynomial (2.3) in (p, p) coordinates is characterized by the fact that, when the parameter w 
changes from 0 to 1, it passes through the points (pt, pt) and (p4, p4), and the tangent at these points 
coincides with the straight lines passing through the points (pt, pt), (p2, p2) and (p3, ps), (p4, p4) 
respectively. At the same time, 

P2 = l+a.p,, P3 = I-P.P, (2.4) 

and the corresponding pressures are found by substituting the values of the density into the equations 
of the tangents. The equations of the tangents and the values of the polynomial at the reference points 
(PIA) and (P 4, P > 4 are calculated in accordance with diagrams (2.1) and (2.2) 

The loading diagram is shown in Fig. 1, where relation (2.1) is represented by the solid curve 1, 
curve 2 is the shock adiabatic curve in the form of (2.2) and the approximating polynomial (2.3) is 
represented by the dashed curve. The stress relief of the medium is described by a two-segment, dashed 
line [18] (curve 3). The dependence of the yield point on the pressure is assumed to be linear [lo] 

F(p) = 5(2ap+b)’ (2.5) 

where a is the tangent of the angle of internal friction and b is the adhesion. 
The equation of state of sand, which has been presented, enables us to describe the unsteady 

deformation of the sand over a wide range of load variations. This equation has been used earlier to 
investigate explosive action on sandy oil [18] and shock and wave interaction in a system of split 
Hopkinson rods [20]. 

3. FORMULATION OF THE PROBLEMS AND BASIC RESULTS 

Below, we presented the results of calculations of the impact and penetration into sand of cylindrical 
steel impactors with a diameter of 20 mm and the following mechanical properties of the impactor 
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material: Young’s modulus 200 GPa, Poisson’s ratio 0.3, density 7.8 g/cm3 and yield point 1.8 GPa. For 
sand with a density p. = 1.76 g/cm3, the constants in the power relation (2.1) were taken as: M = 2.1 GPa 
and n = 1.8 [9], and the constants of the shock adiabatic curve of (2.2) were A = 500 m/s and B = 2.4 
[lo]. The values of the constants in the interpolating polynomial were: a = p = 0.06, p1 = 1.86 g/cm3 
and p4 = 2.15 s/cm3. The parameters of the functional relation for describing the stress relief were: 
yc = 2, yp = 5 (th is notation corresponds to that adopted earlier in [ll]), the initial speed of sound 
during stress relief co = 350 m/s, the shear modulus G = 150 MPa and the constants in relation (2.5) 
were a = 0.6, b = 0 [9]. 

The interaction of an extended impactor with a plane end with sandy soil. We will now present the 
numerical results of an investigation into the collision, formation of a pressure pulse and its propagation 
in a rod-like impactor when it is impacted by a container with sand at a speed of 276 m/s. The formulation 
of the problems corresponds to the formulation of the inverse experiment [8]. 

The results of the calculations suggest that the initial stage in the interaction of the impactor with 
the soil is accompanied by the formation of a cavity which confirms similar conclusions drawn earlier 
in [3,8]. The magnitude of the calculated integral contact force, which is compared with the experimental 
results depicted by the small open circles, is shown by the solid curve in Fig. 2. The ratio of the maximum 
value of the forces to their values at the quasi-steady stage of penetration is equal to approximately 2. 
The maximum values of the contact forces in the case of the impact of rigid and elastically deformable 
impactors (yield point 1.8 GPa) on soil do not differ by more than 5%. The formation of plastic 
deformations in rod-like striker with a yield point of 0.3 GPa (the dot-dash curve in Fig. 2) leads to a 
significant reduction in the value of the resistance force, calculated using the longitudinal stresses in 
the rod, and to appreciable errors in determining the contact forces. 

The experimental curves of the maximum values of the resistance force (the black dots) and of the 
forces at the quasi-steady stage of penetration (the small open circles) shown in Fig. 3. The maxima of 
the resistance forces, calculated using a well-known method [3], are represented by the solid curve 1, 
and the results of the numerical calculations are represented by the dashed line 1, 

In order to estimate the forces at the quasi-steady stage, we use the results obtained earlier in [3] 
for the subsonic motion of a body at a constant rate of penetration 

F = C,( 1 + 4alld)Sp,V*/2 (3.1) 

Here 1 is the distance from the centre section to the leading point, that is, the vertex of the body surface 
and d is the diameter of the cross-section of the body. In the case of quasi-steady motion of a cylinder 
with a flat end, a region of compacted soil is formed which moves together with the body. The dimensions 
of this compacted region have to be taken as the parameters 1 and d in formula (3.1). If it is assumed 
that the compacted core has the form of a hemisphere or an ogival, then 1 = 1 and d = 2 cm. The 
remaining parameters are defined in the following way: S = lrd2/4 and V is the penetration velocity of 
the body. The solid curve 2 corresponds to the results obtained using formula (3.1) when C, = 1 and 
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the dashed curve 2 corresponds to the numerical calculations. Over a range of impact velocities of 
100-600 m/s, the difference in the forces at the quasi-steady stage of penetration obtained using 
experimental data and numerically does not exceed 15%. 

In this problem, the shear strength and the irreversibility of the bulk deformations of the soil have 
practically no effect on the maximum values of the longitudinal stresses in the rod-like impactor. The 
difference only manifests itself with the passage of time at the stage of the developed quasi-steady 
penetration and can reach a value of 100% [8]. The effect of allowing for the forces of sliding friction 
of the soil on the impactor surface is small, which is explained by the small radial displacement of the 
soil on the end of the impactor and the fact that there is no interaction with the lateral surface of the 
rod when the flow around it is cavitational in character. 

Interaction of a hemispherical impactor with soil. A numerical calculation of the interaction of a 
hemispherical impactor with soil has also been carried out in a formulation which corresponds to the 
inverse experiment [8]. It is assumed that the penetration occurs at a constant rate. 

The experimental data, that is, the maximum values of the resistance force to penetration, are shown 
as a function of the velocity of impact of the hemispherical impactor by the small open circles in Fig. 4 
and the results of the numerical calculations are represented by the dashed curve. It is seen that there 
is satisfactory agreement between the numerical and experimental results over the range of velocities 
150, . . . ,400 m/s and the disagreement lies within the limits of experimental error (N-20%). 

In the case of the subsonic motion of a body with a hemispherical cap in soil, the values of the forces 
at the quasi-steady stage also estimated by formula (3.1). In experiments and numerical calculations, 
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a flow separation angle of 60” to 70” was observed. For this value of the angle, the distance from the 
centre section to the vertex of the body is equal to 0.5, d= 1.73 cm. The forces at the quasi-steady stage 
of penetration, obtained using formula (3.1) with C, = 1 are shown by the solid curve in Fig. 4 and the 
results of the numerical calculations are represented by the dotted curve. The good agreement between 
the numerical and the analytical results confirms the applicability of the formulae [3] for estimating 
the parameters of the quasi-steady stage of the motion of hemispherical impactors. 

It is well known that, in the case of the motion of blunt bodies in soil, neglect of the shear strength 
leads to a reduction in the resistance by a factor of l/(1 + 4ald) - 0.6 [3]. The assumption that the soil 
has no shear properties in the numerical calculations leads to a reduction in the resistance by a factor 
of approximately 0.5-0.6, which is also confirmed by the experimental data [S]. Unlike the case of the 
penetration of an impactor with a plane end, when account is taken of friction in the numerical 
calculations, the maximum value of the resistance increases by 15 to 20%. The value of the forces at 
the quasi-steady stage of penetration increase by 5 to 10%. When the velocity of penetration increases 
(greater than 400 m/s), the effect of sliding friction on the resistance decreases. 

Penetration of a cylindrical impactor with a conical cap into soil. A sketch of the problem of the vertical 
penetration of a cone, with an arbitrary vertex angle 2p, into soil is shown in Fig. 5. The transient 
phenomena: the impact on the soil surface and the subsequent initial period of penetration into the 
soil, are primarily considered. 

The following assumptions, under which the problem of the penetration of a cone of finite span admits 
of an analytical solution, have been previously introduced in [ 121: 

(1) the soil particles move along a normal to the surface of the penetrating cone; 
(2) the density retains the maximum value which has been attained behind the front which is formed 

in the soil during the penetration of the shock wave; 
(3) the pressure distribution along the contact surface is constant when x changes from 0 to hcos*P 

and increases non-linearly when n E [hcos2p, h]. 
Here, the change in x is measured in the direction from the vertex of the penetrating cone, h is the 

distance from the vertex to the free surface of the soil (the depth of penetration) and p is half the aperture 
angle of the cone. 

A numerical analysis of the penetration of a conical impactor into study soil was carried out in order 
to check these hypotheses. 

Different versions of the penetration of a cone with a mass of 44 g, taking account of the drop in the 
velocity and penetration of the cone into the soil, were calculated for a constant velocity V = 225 m/s, 
R = 1 cm and 2p = 60”. In the first series of calculations, no account was taken of the sliding friction 
of the particles on the surface of the cone and, in the second series, friction was taken into account 
using Coulomb’s law. In the case when there is no friction, the soil particles moved practically along 
the normal to the contact surface. The existence of friction leads to a deviation of the trajectories of 
the particles along the direction of motion of the penetrating cone. Sliding friction was taken into account 
in the subsequent calculations. The value of the friction coefficient remained constant during a 
calculation and was equal to 0.3 [18]. 
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Numerous experiments have shown that the stress relief in a real soil is close to vertical only in the 
case of high pressures of the order of 1 GPa. When the loading is reduced, there is also a substantial 
reduction in the stress relief modulus. The theoretical prerequisite for the conservation of the maximum 
value attained by the density corresponds to an infinite (or quite high) velocity of the stress relief wave 
in the soil. The effect of the magnitude of the stress relief modulus on the parameters of the penetration 
process was analysed in the following manner. Different versions were calculated in which the velocity 
of the stress relief wave co at a low initial pressure [18] was equal to 200 and 2000 m/s. 

The results of the comparison are shown in Fig. 6 in the form of the distribution of the dimensionless 
contact pressure p- = pl(pV*/2) along the generatrix of the cone. The results of calculations with an 
initial stress relief velocity of 200 m/s are shown by the solid curves and the results of calculation when 
co = 2000 m/s are shown by the dashed curves. Curves 1 and 2 correspond to the results of calculations 
of the penetration of a cone with a constant velocity V = 225 m/s. The results of a calculation of the 
penetration of a cone with a mass of 44 g are shown by curves 3 and 4. The curves are presented at the 
instant of time 2t*, (t* = H/V). It is clear that the effect of stress relief on the contact pressure distribution 
appears to a greater extent in the motion with constant velocity (curves 1 and 2). In the case of the 
chosen parameters (aperture angle, velocity of penetration and type of soil), the maximum value is 
reached in the neighbourhood of the cone vertex. The stress relieving action of the free surface is 
propagated in a narrow layer close to the surface. Hence, the suggestion put forward earlier [12] 
concerning a maximum of the contact pressure at the intersection of a cone with a free surface, which 
is shown by the dotted curve in Fig. 6, turns out to be incorrect. A constant value of the dimensionless 
contact pressure is obtained using the formula [12] 
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P= (3.2) 

where b = fi, p is the density on the shock wave, a = 
P 

A, v = 1 yz!V , S = rth2 tg2/3, and the 

angle of internal friction cp = 30”. 
Earlier, in [12], the pressure in the shock wave was calculated using the formula 

P = Pofg2W2 (3.3) 

and later, using an equation of state for the soil of the type of (1.3), the corresponding density, which 
is used in expression (3.2), was calculated. The coefficient of resistance was defined as the ratio of the 
pressure (3.2) to the cross-section area of the cone. In the numerical solutions of the problem, the value 
of the coefficient of resistance was calculated using the formula 

-1 

c, = F(t) 
( 
;pov2(t)7cr2(t) 

) 
(3.4) 

where F(t) is the numerical value of the resistance to penetration of the cone into the soil and r is the 
radius of the cross-section of the depressed part of the cone. In the case of penetration to a depth H 
and further, the cross-section area remains constant r(t) = const = R. 

Graphs of the coefficient of resistance to penetration against the velocity of penetration are shown 
in Fig. 7. The analytical solutions, obtained using formulae (3.2) and (3.3), are represented by the dot- 
dash curve, the results of the numerical calculations by the solid curve and the results of the inverse 
experiment by the small open circles. For the whole range of impact velocities investigated, the numerical 
and analytical [12] results are significantly different, particularly in the case of impact velocities below 
100 m/s. 

The analytical solution can be refined if the density at the shock wave front p is determined taking 
account of the non-linearity of the soil compression diagram, obtained from the solution of the problem 
of the decay of an arbitrary discontinuity [21]. The value of the velocity U of the contact discontinuity 
is determined from the equation 

(U-Uo)2 = (0-0,)(1/p-l/p,) (3.5) 

where u. is the velocity and o. is the stress before the wave front. At the initial instant of penetration 
u. = o. = 0. If it is assumed that the soil particles move along the normal to the surface of the penetrating 
cone, the velocity of the contact discontinuity is given by the expression U = Vsin2p and Eq. (3.5) is 
transformed to the form 

o(p)(l/p - l/p,) = V’sifP (3.6) 
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When the relation between the stress and the density is known 

O(P) = -p(p) - iGln& 
PO 

the value of the density can be calculated from Eq. (3.5) by Newton’s method, taking account of the 
dependence of the yield point on the pressure (2.5). With this method of calculating the coefficient of 
resistance, the analytical results (the dashed curve in Fig. 7) are in better agreement with the numerical 
and experimental data. 

Graphs of the dimensionless resistance to penetration against the dimensionless time (the values of 
the force are divided by 1/2pV27rR2 and the time is divided by t*) are shown in Fig. 8. The notation used 
in this figure is the same as the employed in Fig. 7. Curves 1 correspond to a constant velocity of 
penetration and curves 2 were obtained taking account of the fall in the velocity accompanying the motion 
of a body with a mass of 44 g. Calculations carried out without taking account of sliding friction led to 
a value of the force which was reduced by a factor of (1 + ctgP)k,, = 1.5. 

A comparison of the results of the numerical calculations of the maximum force F (curves 1 and 2), 
the coefficient of resistance C, (curves 3 and 4) and experiments plotted against the velocity of impact 
I/ over a range of 150 to 400 m/s is shown in Fig. 9 for cones with an aperture angle 20 = 60” (the 
calculated data are shown by the solid curves and the experimental data by the small open and dark 
circles) and for a cone with an aperture angle of 100” (the calculated data are represented by the dashed 
curves and the experimental data by the small open and dark triangles). Curves 1 and 3 were constructed 
for the following values of the parameters: 2p = loo”, and curves 2 and 4 when 2p = 60”. For the 
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experimental data, the small open circles represent the coefficient of resistance, and the small dark circles 
show the resistance force to penetration of a cone with an aperture angle of 2p = 60”, the small open 
triangles represent the coefficient of resistance and the small dark triangles show the resistance force 
to penetration of a cone with an aperture angle of 2p = 100”. 
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